Below you can find the full step by step solution for you problem. We hope it will be very helpful for you and it will help you to understand the solving process.
(3*e^(4-(10*x)))'The calculation above is a derivative of the function f (x)
(3)'*e^(4-(10*x))+3*(e^(4-(10*x)))'
0*e^(4-(10*x))+3*(e^(4-(10*x)))'
0*e^(4-(10*x))+3*e^(4-(10*x))*((4-(10*x))'*ln(e)+((4-(10*x))*(e)')/e)
0*e^(4-(10*x))+3*e^(4-(10*x))*((4-(10*x))'*ln(e)+((4-(10*x))*0)/e)
0*e^(4-(10*x))+3*e^(4-(10*x))*(((-(10*x))'+(4)')*ln(e)+((4-(10*x))*0)/e)
0*e^(4-(10*x))+3*e^(4-(10*x))*((10*(x)'+(10)'*x+(4)')*ln(e)+((4-(10*x))*0)/e)
0*e^(4-(10*x))+3*e^(4-(10*x))*((10*(x)'+0*x+(4)')*ln(e)+((4-(10*x))*0)/e)
0*e^(4-(10*x))+3*e^(4-(10*x))*((0*x+10*1+(4)')*ln(e)+((4-(10*x))*0)/e)
0*e^(4-(10*x))+3*e^(4-(10*x))*(((4-(10*x))*0)/e+(0-10)*ln(e))
0*e^(4-(10*x))+3*e^(4-(10*x))*(((4-(10*x))*0)/e-10*ln(e))
0*e^(4-(10*x))+3*e^((-(10*x))'+(4)')
0*e^(4-(10*x))+3*e^(10*(x)'+(10)'*x+(4)')
0*e^(4-(10*x))+3*e^(10*(x)'+0*x+(4)')
0*e^(4-(10*x))+3*e^(0*x+10*1+(4)')
0*e^(4-(10*x))+3*e^(0-10)
0*e^(4-(10*x))+3*0^(0-10)
0*e^(4-(10*x))+3*-10*e^(4-10*x)
-30*e^(4-(10*x))
| Derivative of ln(x^2)^1/2 | | Derivative of (Sin(x^5))^3 | | Derivative of -6*e^(-6*x) | | Derivative of cos(3-5x) | | Derivative of (2-x^2)^5 | | Derivative of (300-x)/160 | | Derivative of 9x^5/7 | | Derivative of 4e^1-x^2 | | Derivative of 6tan(x^8) | | Derivative of 5u^0.8-6u^1.9 | | Derivative of ln(x)x^7 | | Derivative of 11*e^x | | Derivative of (11*e^x) | | Derivative of 4.15^x | | Derivative of x^4cos(2x) | | Derivative of ln(x)x^7/7 | | Derivative of 14-5cos(pi*x) | | Derivative of x^7/49 | | Derivative of 14-5cos(3.14x) | | Derivative of 2.5(cos(11x)) | | Derivative of e^(x)^(4) | | Derivative of Cos(5x-x^4) | | Derivative of 3000(1.02)^x | | Derivative of e^ln(cos(x)) | | Derivative of 100*(1-e^(-0.2*x)) | | Derivative of g^3(x) | | Derivative of 250/x | | Derivative of 4x-cos(x) | | Derivative of 4(e^(3x)) | | Derivative of (pi*cos((pi*x)/4))/2 | | Derivative of 2sin((pi*x)/4) | | Derivative of (e^5x)/(x^20) |